1 Referanser tilhørende figur 7.2–7.4 med eksempler på genteknologiske anvendelser i forskning og innovasjon
Eksemplene har lik nummerering som i figuren; P1–P19 for planteeksempler, D1–D18 for eksempler med anvendelser i dyr, M1–M5 for eksempler med mikroorganismer, og ett eksempel med legemidler.
Organismegruppe/Art | Referanser | Lenke |
---|---|---|
Planter | ||
P1 – Ris | Achary, V., & Reddy, M. K. (2021). CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Scientific Reports, 11(1), 1-13. | https://www.nature.com/articles/s41598-021-00828-z |
P2 – Ris | Zheng, S., Ye, C., Lu, J., Liufu, J., Lin, L., Dong, Z., ... & Zhuang, C. (2021). Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. International journal of molecular sciences, 22(17), 9554. | https://pubmed.ncbi.nlm.nih.gov/34502462/ |
P3 – Hvete | Jobson, E. M., Johnston, R. E., Oiestad, A. J., Martin, J. M., & Giroux, M. J. (2019). The impact of the wheat Rht-B1b semi-dwarfing allele on photosynthesis and seed development under field conditions. Frontiers in Plant Science, 10, 51. | https://www.frontiersin.org/articles/10.3389/fpls.2019.00051/full |
P4 – Hvete | Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., ... & Gao, C. (2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 602(7897), 455- 460. | https://www.nature.com/articles/s41586-022-04395-9 |
P5 – Banan | Tripathi, L., Ntui, V. O., & Tripathi, J. N. (2022). Control of bacterial diseases of banana using CRISPR/Cas-based gene editing. International Journal of Molecular Sciences, 23(7), 3619. | https://www.mdpi.com/1560174 |
P6 – Banan | Wang, X., Yu, R., & Li, J. (2021). Using genetic engineering techniques to develop banana cultivars with fusarium wilt resistance and ideal plant architecture. Frontiers in Plant Science, 11, 617528. | https://www.frontiersin.org/articles/10.3389/fpls.2020.617528/full |
P7 – Kassava | Lim, Y. W., Mansfeld, B. N., Schläpfer, P., Gilbert, K. B., Narayanan, N. N., Qi, W., ... & Bart, R. S. (2022). Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2- type resistance to Cassava Mosaic Geminiviruses. Nature communications, 13(1), 3933. | https://www.nature.com/articles/s41467-022-31414-0 |
P8 – Ris | Santosh Kumar, V. V., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M. V., & Chinnusamy, V. (2020). CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 26, 1099-1110. | https://doi.org/ 10.1007%2Fs12298-020-00819-w |
P9 – Soya | Rasheed, A., Mahmood, A., Maqbool, R., Albaqami, M., Sher, A., Sattar, A., ... & Wu, Z. (2022). Key insights to develop drought-resilient soybean: A review. Journal of King Saud University-Science, 34(5), 102089. | https://doi.org/10.1016/j.jksus.2022.102089 |
P10 – Ris | Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., ... & Luo, L. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular breeding, 39, 1-10. | https://doi.org/ 10.1007%2Fs11032-019-0954-y |
P11 – Soya | Nettside fra Calyxt | https://calyxt.com/calyxt- announces-next-generation- premium-soybean-product-line-performance-best-in-class-for-high- oleic-ultra-low-linolenic-profile/ |
P12 – Tomat | Nettside fra Sanatechseed | https://sanatech-seed.com/en/220330/ |
P13 – Grønnkål | Nettside fra Pairwise | https://www.pairwise.com/ food-systems/ |
P14 – Hvete | Raffan, S., Oddy, J., Mead, A., Barker, G., Curtis, T., Usher, S., ... & Halford, N. G. (2023). Field assessment of genome-edited, low asparagine wheat: Europe's first CRISPR wheat field trial. Plant Biotechnology Journal, 21(6), 1097. | https://doi.org/10.1111/pbi.14026 |
P15 – Peanøtt | Brackett, N. F., Pomés, A., & Chapman, M. D. (2022). New Frontiers: Precise Editing of Allergen Genes Using CRISPR. Frontiers in Allergy, 2, 109. | https://doi.org/10.3389/falgy.2021.821107 |
P16 – Kassava | Juma, B. S., Mukami, A., Mweu, C., Ngugi, M. P., & Mbinda, W. (2022). Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Frontiers in Plant Science, 4236. | https://doi.org/10.3389/fpls.2022.1009860 |
P17 – Tomat | Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., ... & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature biotechnology, 36(12), 1211-1216. | https://www.nature.com/articles/nbt.4272 |
P18 – Mais | Holst-Jensen, A., Bertheau, Y., De Loose, M., Grohmann, L., Hamels, S., Hougs, L., ... & Wulff, D. (2012). Detecting un- authorized genetically modified organisms (GMOs) and derived materials. Biotechnology advances, 30(6), 1318-1335. | http://dx.doi.org/10.1016/ j.biotechadv.2012.01.024 |
P19 – Teff | Beyene, G., Chauhan, R. D., Villmer, J., Husic, N., Wang, N., Gebre, E., ... & MacKenzie, D. J. (2022). CRISPR/Cas9-mediated tetra-allelic mutation of the ‘Green Revolution’SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef). Plant biotechnology journal, 20(9), 1716-1729. | https://doi.org/10.1111/pbi.13842 |
Dyr | ||
D1 – Katt | Brackett, N., Pomes, A., & Chapman, M. (2021). The Major Cat Allergen, Fel d 1, Is a Viable Target for CRISPR Gene Editing. Journal of Allergy and Clinical Immunology, 147(2), AB175. | https://doi.org/10.1016/j.jaci.2020.12.617 |
D2 – Gris | Dolgin, E. (2021). First GM pigs for allergies. Could xenotransplants be next?. Nature Biotechnology, 39(4), 397-401. Oppsummert i: Fischer, K., & Schnieke, A. (2022). Xenotransplantation becoming reality. Transgenic Research, 31(3), 391-398. | https://www.nature.com/articles/s41587-021-00885-9 |
D3 – Storfe | Sammendrag av FDAs risikovurdering for V-006378 PRLR- SLICK cattle | https://www.fda.gov/media/155706/download |
D4 – Gris | Wang, K., Ouyang, H., Xie, Z., Yao, C., Guo, N., Li, M., ... & Pang, D. (2015). Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific reports, 5(1), 16623. | https://www.nature.com/articles/srep16623 |
D5 – Hest | Moro, L. N., Viale, D. L., Bastón, J. I., Arnold, V., Suvá, M., Wiedenmann, E., ... & Vichera, G. (2020). Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Scientific reports, 10(1), 1-10. | https://www.nature.com/articles/s41598-020-72040-4 |
D6 – Storfe | Owen, J. R., Hennig, S. L., McNabb, B. R., Mansour, T. A., Smith, J. M., Lin, J. C., ... & Van Eenennaam, A. L. (2021). One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC genomics, 22, 1-11. | https://doi.org/10.1186/ s12864-021-07418-3 |
D7 – Gris | Mark Cigan, A., & Knap, P. W. (2022). Technical considerations towards commercialization of porcine respiratory and reproductive syndrome (PRRS) virus resistant pigs. CABI Agriculture and Bioscience, 3(1), 1-20. | https://cabiagbio.biomedcentral.com/articles/10.1186/ s43170-022-00107-5 |
D8 – Kulefisk | Japan embraces CRISPR-edited fish. Nat Biotechnol 40, 10 (2022). | https://www.nature.com/articles/s41587-021-01197-8 |
D9 – Havkaruss | Kishimoto, K., Washio, Y., Yoshiura, Y., Toyoda, A., Ueno, T., Fukuyama, H., Kato, K. & Kinoshita, M. (2018). Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture, 495, 415- 427. | https://www.sciencedirect.com/science/article/abs/pii/S0044848617324705 |
D10 – Tilapia | Møteabstract (World Aquaculture Society) fra Intrexon Corporation. Også omtalt i nettsak https://www.fishfarmingexpert.com/aquabounty-argentina-gene-editing/aquabounty-gets-argentina-go- ahead-for-edited-tilapia/1151140 | https://www.was.org/ MeetingAbstracts/ ShowAbstract/136529 |
D11 – Laks | Waltz, E. (2017). First genetically engineered salmon sold in Canada. Nature, 548(7666). | https://www.nature.com/articles/nature.2017.22116 |
D12 – Laks | Kleppe, L., Fjelldal, P. G., Andersson, E., Hansen, T., Sanden, M., Bruvik, A., ... & Wargelius, A. (2022). Full production cycle performance of gene-edited, sterile Atlantic salmon- growth, smoltification, welfare indicators and fillet composition. Aquaculture, 560, 738456. | https://doi.org/10.1016/ j.aquaculture.2022.738456 |
D13 – Laks | Datsomor, A. K., Zic, N., Li, K., Olsen, R. E., Jin, Y., Vik, J. O., ... & Winge, P. (2019). CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Scientific reports, 9(1), 1-13. | https://doi.org/10.1038/ s41598-019-43862-8 |
D14 – Laks | Boison, S., Ding, J., Leder, E., Gjerde, B., Bergtun, P. H., Norris, A., ... & Robinson, N. (2019). QTLs associated with resistance to cardiomyopathy syndrome in Atlantic salmon. Journal of Heredity, 110(6), 727-737. | https://academic.oup.com/jhered/article/110/6/727/5530261 |
D15 – Laks | Hillestad, B., Makvandi-Nejad, S., Krasnov, A., & Moghadam, H. K. (2020). Identification of genetic loci associated with higher resistance to pancreas disease (PD) in Atlantic salmon (Salmo salar L.). BMC genomics, 21(1), 1- 13. | https://bmcgenomics.biomedcentral.com/articles/10.1186/ s12864-020-06788-4 |
D16 – Malaria- mygg | Kyrou, K., Hammond, A. M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A. K., ... & Crisanti, A. (2018). A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature biotechnology, 36(11), 1062-1066. | https://doi.org/10.1038/nbt.4245 |
D17 – Sebrafisk | Vick, B. M., Pollak, A., Welsh, C., & Liang, J. O. (2012). Learning the scientific method using GloFish. Zebrafish, 9(4), 226-241. | https://doi.org/10.1089/zeb.2012.0758 |
D18 – Laks | Pavelin, J., Jin, Y. H., Gratacap, R. L., Taggart, J. B., Hamilton, A., Verner-Jeffreys, D. W., ... & Houston, R. D. (2021). The nedd-8 activating enzyme gene underlies genetic resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genomics, 113(6), 3842-3850. | https://doi.org/10.1016/j.ygeno.2021.09.012 |
Mikro- organismer | ||
M1 – Klebsiella variicola | Wen, A., Havens, K. L., Bloch, S. E., Shah, N., Higgins, D. A., Davis-Richardson, A. G., ... & Temme, K. (2021). Enabling biological nitrogen fixation for cereal crops in fertilized fields. ACS Synthetic Biology, 10(12), 3264-3277. | https://pubs.acs.org/doi/10.1021/acssynbio.1c00049 |
M2 – Bacillus subtilis | Nettside fra Zbiotics | https://zbiotics.com/products/zbiotics |
M3 – Pseudomona s aeruginosa | Saeidi, N., Wong, C. K., Lo, T. M., Nguyen, H. X., Ling, H., Leong, S. S. J., ... & Chang, M. W. (2011). Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Molecular systems biology, 7(1), 521. | https://www.embopress.org/doi/full/10.1038/msb.2011.55 |
M4 – Pseudomona s aeruginosa | Singh, R., Bishnoi, N. R., Kirrolia, A., & Kumar, R. (2013). Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor. Bioresource technology, 127, 49-58. | https://pubmed.ncbi. nlm.nih.gov/23131622/ |
M5 – Ralstonia eutropha | Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28-39. | DOI:10.12691/ijebb-3-1-5 |
Legemidler | ||
L1 – SARS- CoV2 | Nettside fra VaccinesWork, en digital plattform som gir informasjon om vaksiner og driftes av Gavi (The Vaccine Alliance). | https://www.gavi.org/vaccineswork/what-are-viral-vector-based-vaccines-and-how-could-they-be-used-against-covid-19 |