Analysis of an internet voting protocol

Kristian Gjgsteen

March 9, 2010

Abstract

The Norwegian government will trial internet voting in the 2011 local government
elections. We describe and analyse a simplified version of the cryptographic protocol
that will be used, and briefly describe the full version of the protocol.

This paper is a first step in a planned evaluation of the cryptographic protocol.

1 Introduction

The Norwegian government will trial internet voting in the 2011 local government elections.
One of the key requirements for elections is trust, and for many internet voting deployments
this trust has been lacking.

One reason is excessive secrecy. It is a well-established cryptographic and computer
security principle that secrecy does not ensure security. Empirically, the converse appears
to hold as transparency seems to increase security. We observe that making system archi-
tecture, design and even implementation details available for inspection leads to increased
security, at least in the long run.

In order to build trust in internet voting, the Norwegian government has decided on
nearly complete transparency. Most important documents from the tender process, includ-
ing most technical details in every submitted proposal, has been made public. Before the
2011 trial, the architecture and even the source code for the deployed system will be made
available to the public.

At the heart of any internet voting system is a cryptographic protocol. The security of
this protocol is a necessary requirement for trust in the internet voting solution. As part of
the initial tender evaluation, a preliminary analysis of the cryptographic voting protocols
was carried out. After the winning bid was selected, it was decided to make some modest
changes to the cryptographic protocol, partially to get security proofs. This paper is a first
analysis, focusing on the modified parts of the cryptographic protocol.

Internet voting in Norway Norwegian elections are somewhat complicated, but ballots
essentially consists of a short sequence of options (a party list followed by selection of



candidates, at most about a hundred options in total) chosen from a small set of possible
options (at most a few thousand). Note that the entire sequence is required to properly
interpret and count the vote. For parliamentary elections order within the sequence is
important, while order does not matter for county and municipal elections.

A real-world internet voting system has significant functional constraints.

The voter should not have to interact with the voting system more than once to submit
a ballot. Most ballots will be submitted during peak hours, and the submitted ballots must
be processed quickly. Once the ballot box closes, the result must be available as soon as
possible.

Since cost does matter and secure computing hardware is expensive, any election in-
frastructure will have quite limited computational resources available for the protocol ex-
ecution.

We also get functional constraints from security considerations. In practice, the two
most significant security problems with internet voting will be compromised computers and
coercion.

Since a significant fraction of home computers are compromised, the protocol must
allow voters to detect ballot tampering without relying on computers. This is complicated
by the fact that voters are unable to do even the simplest cryptographic processing without
computer assistance.

When voting from home, no amount of cryptography can protect the voter from coer-
cion. To defend against coercion, we mandate that the system must allow voters to vote
multiple times, so-called revoting, counting only the final ballot. Voters may also vote once
on paper and this vote should be counted instead of any electronic ballot, no matter when
submitted. The internet voting system must essentially allow election administrators to
cancel votes.

Defending against coercion by election insiders is very difficult. Before anyone can cast
their vote, they must somehow authenticate to the system. For most plausible authen-
tication systems, anyone with access to the authentication system will be able to detect
electronic revoting.

In the Norwegian electoral system, for any ballot there will be a large number of legal
ballots that are different, but have essentially the same effect on the final election result.
Therefore, any coercer with access to the counted ballots (electronic or on paper) can tell
his victim to submit an unlikely ballot with the desired effect, then verify that his victim
did not revote by observing if the unlikely ballot is preset among the counted ballots.

Related work We can roughly divide the literature into protocols suitable for voting
booths [5, 6, 16, 17, 18, 19], and protocols suitable for remote internet voting [7, 8, 14],
although protocols often share certain building blocks. One difference is that protocols
for voting booths should be both coercion-resistant and voter verifiable, while realistic
attack models (the attacker knows everything the voter knows) for remote internet voting
probably make it impossible to achieve both true voter verifiability and coercion-resistance.



For internet voting protocols, we can again roughly divide the literature into two main
strands distinguished by the counting method. One is based on homomorphic tallying.
Ballots are encrypted using a homomorphic cryptosystem, the product of all the ciphertexts
is decrypted (usually using some form of threshold decryption) to reveal the sum of the
ballots. For simple elections, this can be quite efficient, but for the Norwegian elections,
this quickly becomes unwieldy, if not impossible.

The other strand has its origins in mix nets [3]. Encrypted ballots are sent through a
mix net. The mix net ensures that the mix net output cannot be correlated with the mix
net input. There are many types of mixes, based on nested encryption [3] or reencryption,
verifiable shuffles [12, 17] or probabilistic verification [1, 14], etc. These will be quite
efficient, even for the Norwegian elections.

Much of the literature ignores the fact that a voter simply will not do any computations.
Instead, the voter delegates computations to a computer. Unfortunately, a voter’s computer
can be compromised, and once compromised may modify the ballot before submission.

One approach is so-called preencrypted ballots and receipt codes [4, 2], where the voter
well in advance of the election receives a table with candidate names, identification numbers
and receipt codes. The voter inputs a candidate identification number to vote and receives
a response. The voter can verify that his vote was correctly received by checking the
response against the printed receipt codes. Note that unless such systems are carefully
designed, privacy will be lost.

One natural approach for securely generating the receipt codes is to use a proxy obliv-
ious transfer scheme [13]. A ballot box has a database of receipt codes and the voter’s
computer obliviously transfers the correct one to a messenger, who then sends the receipt
to the voter. The receipt codes should be sent through an independent channel. This
ensures that a voter is notified whenever a vote is recorded, preventing a compromised
computer from undetectably submitting ballots on the voter’s behalf.

Our contribution The cryptographic protocol to be used in Norway is designed by Scytl,
a Spanish company. It is mostly a fairly standard internet voting system. Essentially, a
voter uses his computers to submit a ballot to an election infrastructure. To defend against
coercion, a voter is allowed to submit multiple ballots, where the final submission will be
counted. The wvoter gives his ballot to a computer, which encrypts the ballot and submits
it to a ballot box. Once the ballot box closes, the submitted ciphertexts are decrypted in
some decryption service, based on a reencrypting mix net. An auditor supervises the entire
process.

The non-standard part of the system is detecting when a compromised computer has
altered the ballot. The ballot box and a receipt generator cooperate to compute a sequence
of receipt codes for the submitted ballot. These codes are sent to the voter through an
independent channel. The voter verifies the receipt codes against a list of precomputed
receipt codes printed on his voting card.

Scytl originally proposed to use a pseudo-random function family to compute the receipt



codes. While this would most likely be secure, it was difficult to prove anything about the
proposal. It was therefore decided to use a slightly different construction. We use the fact
that exponentiation is in some sense a pseudo-random function [9, 11], and since ElGamal
is homomorphic, exponentiation can be efficiently done “inside” the ciphertext. This gives
us a novel and quite efficient scheme.

We note that the protocol described in this paper is a simplified version of the protocol
that will be deployed. The essential difference is that the simplified protocol is only secure
against passive corruption of infrastructure players. The full protocol has protection against
active corruption of infrastructure players. A description and analysis of the full protocol
will appear later.

Overview of the paper We describe the security goals for the full protocol in Section 2,
as we believe this is of independent interest. We discuss what capabilities an adversary
will have, and define what the protocol is supposed to achieve.

The simplified protocol is specified and analysed in Section 3. We also briefly discuss
how the full protocol protects against active attacks.

2 Security goal

Functionally, our protocol must allow voters to submit, repeatedly, ballots consisting of a
sequence of options, each chosen from a set of options O, to an infrastructure. After the
voting period, the submitted ballots should be counted.

To define security for a protocol, we must define what kind of attackers we face and
how we will allow them to influence the election.

We stress that we do not consider coercion in this analysis, beyond the brief discussion
in the introduction.

The attacker We start with the standard premise that the attacker controls the network.
What remains to decide is which players can be corrupted.

Any external attacker will clearly be able to compromise a number of voters as well as
a larger number of computers.

If an infrastructure is divided into a small number of separate players, organizational
and non-cryptographic technical measures may make it reasonable to assume that an inside
attacker can compromise at most one infrastructure player.

Remark 1. Suppose we have some protocol satisfying the following: (i) the voter submits
his vote to the computer, the computer submits an encrypted ballot to the infrastructure,
and the infrastructure players cooperate to generate a receipt code and send it directly to
the voter; (ii) a single infrastructure player X is responsible for sending the receipt code
to the voter.



Consider the following attack where X and the voter’s computer are corrupt. The
computer first submits the voter’s real ballot to the infrastructure, but the corrupted X
delays the receipt code to the voter. Next, the computer submits a forged ballot to the
infrastructure, leading to the computation of a new receipt code. This code is discarded
by X, who instead sends the previous receipt code to the voter. The voter now believes
his ballot was received correctly. But in reality, the voter’s ballot has been replaced by a
forged ballot.

The conclusion is that it is impossible for this type of protocol to protect a voter if both
his computer and one particular infrastructure player is corrupt. For practical reasons, our
protocol will be of this form. We therefore arrive at the following static corruption model:

The attacker may corrupt either (i) any single infrastructure player and any
subset of voters and computers, or (ii) the receipt generator.

For the simplified protocol, we use a weaker attack model:

The attacker may corrupt either (i) any subset of voters and computers, or (ii)
passively any one infrastructure player.

The attacker’s influence We shall allow corrupt voters to submit spoilt ballots, that
is, they can submit ballots containing a sequence of options from a set O’ containing O as
a subset.

Since an attacker controls the network between a voter’s computer and the election
infrastructure, he will certainly be able to delay or block the submission of ballots. Obvi-
ously, any corrupt infrastructure player can halt and thereby stop the election. They can
usually cause more suspicious integrity failures, again stopping the election.

For usability reasons, the number of receipt codes must be equal to the number of
options chosen. Therefore, if the receipt generator is corrupted, it is unavoidable that the
number of options on a ballot leaks.

If the voter’s computer is compromised, the attacker will see the ballot. The attacker
may also modify the ballot, but in this case, the voter should be able to notice with high
probability.

Remark 2. Any function from O’ to the set of receipt codes defines a partition of O’. A
partition defines an equivalence relation. The uniform distribution on the set of functions
from O’ to the receipt code set therefore induces a probability distribution on the set of
equivalence relations on O’.

We extend an equivalence relation ~ on O in the obvious way to strings of options,
ie. (vi,...,vg) ~ (V],...,v) if and only if k = k" and v; ~ v} fori =1,... k.

The probability that changing a ballot escapes detection should be equal to the prob-
ability that the original and modified ballots are equivalent under an equivalence relation
sampled from the above distribution.



Figure 1: Communication between players in the simplified protocol. The infrastructure
players are inside the box.

3 Protocol

We describe the simplified protocol. The players in the protocol are the woter V', the
voter’s computer P, the ballot box B the receipt generator R, and the decryption service
D. The auditor is not part of the simplified protocol. The players communicate via secure,
authenticated channels, as described in Fig. 1. We note that the ballot box knows which
voter voter is communicating with which computer.

The voter chooses as its ballot a sequence of options (v1,...,v) from a set of options
O ={1,2,...}, the computer pads the ballots with zeros to a fixed length ks, encrypts
it with the election encryption key and submits the encrypted ballot to a ballot box. The
ballot box, in cooperation with the receipt generator computes a receipt code that is sent
directly to the voter. The voter has a correspondence between options and receipt codes.
If the receipt code received matches the option selected, the voter accepts, otherwise he
knows something went wrong.

When the ballot box closes, the ballot box submits the encrypted ballots to the decryp-
tion service, which decrypts the ballots and publishes the result.

Prerequisites The system uses a finite cyclic group G of prime order ¢ generated by g.
We also have a pseudo-random function family F' from G to C.

A function f : O — G is chosen. We then extend the function by defining f(0) to be
the identity element in G.

Key generation Before the election, three secret parameters a1, as and ag are generated
such that a; + az = a3z (mod ¢). The ballot box gets ag, the receipt code generator gets
as and the decryption service gets a;. Three public parameters for the election, y1, o and
y3, are computed as y; = g%, yo = ¢*2 and y3 = g*3.

For every voter, s is sampled from {0,1,...,¢ — 1}, and d from F. The composition
of f, the exponentiation map = +— «° and d gives a function r : O — C for each user,
r(v) = d((f(v))®). Before the election, the set {(v,r(v)) | v € O} is computed and given
to V.



v
€T < gtl7 ($’ w)
v f(v) i v P
: F 4 d(wE—3)
7
[ ] [ ] [ ] [ ]

Figure 2: Protocol for submission of one option and generation of one receipt code.

Vote submission When the voter V' wants to submit the ballot (v, ..., vg), the protocol
proceeds as follows:

1. The voter sends (v1,...,v;) to his computer P. The computer sets v; = 0, i =
k41, ko

2. For 1 <i < kg, the computer samples ¢; ; from {0,1,...,¢g—1}, computes (z;, w;) =
(g1, 5 f(v;)) and sends ((z1,w1), ..., (T, Wh,,,) to the ballot box B.

3. The ballot box computes &; = z§ and w; = wi;*2. The pairs ((£1,W1), - -+, (Tky » Vkias )
and the voter’s name is sent to R.

4. The receipt generator computes 7; = d(w;&; **) and sends (71,...,7x) to the voter.

(Note that k& can be deduced from the number of non-identity decryptions.)

5. The voter verifies that every pair (v;, ;) is in the set of receipt codes received before
the election, and if so consideres the ballot cast.

The protocol is summarized in Fig. 2.

Counting When the ballot box closes, it sends every voter’s final submitted encrypted
ballot to the decryption service, in random order. The decryption service decrypts all the
ciphertexts and publishes the resulting ballots in random order.

3.1 Completeness

The protocol is complete if, when every participant is honest, the submitted ballots are
eventually correctly decrypted, and the receipt codes sent to the voter matches the expected
values.

Completeness is obvious, except for the receipt code received by the voter. We only
need to argue that (v, 7) will always be in the computed set of receipt codes, that is, that



7 = r(v). We compute
Wi~ " = w'E?ET® = w'ET M = w'(2®)”Y = (wxT ) = (f(v))°.

Completeness follows.

3.2 Security

This section argues informally about the security of the simplified protocol. We consider
the following corruption model: (a) The voter and his computer are corrupted; (b) the
voter’s computer is corrupted; and (c) one of the infrastructure players is honest, but
curious. We prove the following properties:

1. If a corrupt computer modifies a ballot, the voter will most likely discover this.

2. No honest, but curious infrastructure player will learn any non-trivial information
about the ballots.

(a) By the assumption of authenticated channels, the ballot box can trivially ensure that
at most one ballot is counted per voter. Submitting malformed ciphertexts will at most
invalidate the voter’s ballot, which we expressly permit.

(b) Suppose the computer submits (v],...,v},) instead of (v, ..., k).

We know that the exponentiation map is a permutation on G and that f is an injection.
Since d will look like a random function, f composed with a permutation composed with
a random-looking function will again look like a random function from O’ to C.

By Remark 2, the voter will accept the manipulation if and only if (vi,...,v,) ~
(v1,...,v;). As long as the set C is sufficiently large, this probability will be small.

(c) We consider the three infrastructure players in turn. Since they are honest, but
curious, we only need to simulate the input they would normally see, we do not need to
model interaction with other parts of the system.

The ballot box Suppose we have an honest, but curious ballot box B* that after the
election is over looks at the ciphertexts and outputs some information about the ballots
submitted.

Given a tuple (g, y1,u1,u2) of elements from G, we shall employ B* as follows:

1. Generate ay and compute y3 = y1¢*2. Send a9 to B*.

2. Instead of encrypting the encoded option f(v;) as usual, we compute the encryption

’ o
as (zj,w;) = (gtlﬂ'u?,yil’lugif(vi)), for some random ¢;.



If (g9,y1,u1,u2) is a Diffie-Hellman tuple, this will simulate the ballot box input per-
fectly. If (g,y1,u1,uz2) is not a Diffie-Hellman tuple, the ballot box input will contain no
information at all about the ballots.

The conclusion is that if B* can extract some information about the ballots, we have a
distinguisher for the Decision Diffie-Hellman problem.

The receipt generator We shall now assume that the family of functions from O
to G given by v — f(v)® is a pseudo-random function family, that is, functions sampled
uniformly at random from the family are indistinguishable from functions sampled uni-
formly at random from the set of all possible functions from O to G. We shall discuss this
assumption and the choice of function f: O — G, as well as an alternative assumption, in
Sect. 3.3.

Suppose we have an honest, but curious receipt generator R* that after the election is
over outputs some non-trivial information about the ballots submitted.

Given a function f and a function p: O — G, we use R* as follows:

1. For the voters V1, Vs, ... V;_1, we choose random functions p; : O — G, 1 <1 < j.

2. Generate keys as usual for Vjii,...,Vy and use the functions p; : v — f(v)%, j <
[ < N.

3. For V;, we use the given function p.

4. For every ballot (v1,...,vx) from a voter V; with function p;, we compute (&;,w;) as
r
(9%, y5' pu(v7)).

If our function p comes from the family and j = 1, this will simulate the receipt
generator input perfectly. If our function p is a random function and j = k4, the receipt
generator input will contain no non-trivial information about the ballots submitted.

After a standard hybrid argument, the conclusion is that if R* can extract some non-
trivial information about the ballots, we have a distinguisher for the function family.

The decryption service Since the decryption service sees the encrypted ballots in
random order, it does not know which ballot originated with which voter, hence can extract
no information about which ballot belongs to which voter.

3.3 Encoding Options as Group Elements

The Decision Diffie-Hellman problem can be formulated as follows:

Given (g1,92) € G x G (where at least g is sampled at random), decide
if (z1,72) € G x G was sampled uniformly from the powers of (g1, ¢g2) (i.e.
(x1,22) = (95, g5) for some s), or uniformly from G x G.



It is well-known (e.g. [9, 11]) that this is equivalent to the following problem:

Given (g1,...,9n) € G™ (where at least g, ..., g, are sampled at random), de-
cide if (z1,...,z,) € G™ was sampled uniformly from the powers of (g1,...,9n)
(ie. (z1,...,2n) = (g§,...,45) for some s), or uniformly from G".

Therefore, if we choose a random injection O — G as our encoding function f, the assump-
tion used to prove privacy against the receipt generator in the previous section follows easily
from Decision Diffie-Hellman.

However, choosing a different encoding function will allow a significant (by a factor of
20-100) speedup of vote decryption. Let p be a safe prime, let G be the quadratic residues
in Fj and let L be a set of small primes whose images {l1,09,...,4,} in [} are quadratic
residues. Consider the following problem:

Given (¢1,...,4,) € G™ as above, decide if (z1,...,2,) € G™ was sampled
uniformly from the powers of (¢1,...,0,) (i.e. (x1,...,2,) = (£3,...,0) for
some s), or uniformly from G™.

Now, if f is any injection from O into {¢1,...,¢,}, the assumption used to prove privacy
against the receipt generator in the previous section holds if the above problem is hard.

While this assumption is very similar to Decision Diffie-Hellman, it seems unlikely that
it will be possible to prove that it follows from Decision Diffie-Hellman.

We currently believe that the best way to solve Decision Diffie-Hellman is to compute
one of the corresponding discrete logarithms. It is known [15] that solving the static Diffie-
Hellman problem with a fairly large number of oracle queries is easier than solving the
discrete logarithm problem.

For fairly large n, a static Diffie-Hellman solver could be applied to decide the above
problem. This would be faster than the fastest known solver for the Decision Diffie-Hellman
problem in the same group. However, for our application, n will always be small, hence the
static Diffie-Hellman solver can not be applied. It seems as if the best approach to solving
the above decision problem is computing discrete logarithms.

Other approaches While the assumption discussed above is sufficient for security, it is
not necessary. A weaker, sufficient condition would be if, given a permutation of a subset
of {£3,...,¢;} for some random s, it was hard to deduce any information about the which
primes were involved and what the permutation was.

The simplest case, which happily corresponds to the most common voting pattern, is
that the receipt generator sees one group element, and must decide which prime was used
to generate it. For reasons explained in Sect. 3.4, the receipt generator is also given a
random generator g and g°.

We do the calculations for the case when there are only two primes to decide between,
say fo and ¢;. Let R* be an algorithm that takes as input five group elements and outputs

10



0 or 1. Define

Poo = PI[R*(EO)Elagvgsvg(s)) = O]a
p11 = Pr[R*({o, l1,9,9°,7) = 1], and
Pirnd = Pr[R*(EmEl’g,gs,gt) = i]7 (XS {07 1}7

where s and ¢ are sampled uniformly at random from {0,1,...,q — 1}. Note that ppna =
1 — p1,rnd, since the input distribution to R* is identical for both probabilities.

We may define the advantage of R* as |pgo + p11 — 1|. Observe that if |poo — Po rnd|
or |pi11 — pimd| are large, we have a trivial solver for Decision Diffie-Hellman with the
generator fixed to either £y or £;.

We may assume that pgg +p11 —1 = 2¢ > 0. Then either pgg > 1/2+€or p1; > 1/2+¢,
so assume the former. Furthermore, let pog — pomd = p. If || > €, we have an adversary
against Decision Diffie-Hellman with the generator fixed to ¢y, so assume |u| < €. Then

P11 — Piynd = 1+ 2€ — poo — (1 — pornd) = 2€ — p1 > €,

which means that we must have an adversary with advantage ¢ against Decision Diffie-
Hellman with the generator fixed to either £y or /5.

The same arguments applies to an R* that can decide between multiple primes, he must
lead to a successful adversary against Decision Diffie-Hellman with the generator fixed to
one of the primes.

Unfortunately, the above argument breaks down if R* is allowed to see multiple primes
raised to the same power. It is possible that a more careful analysis could succeed here,
though.

3.4 Active attacks

In this section, we briefly discuss how the full protocol will defend against active attacks
from infrastructure insiders. The basic idea is that everyone should prove that they have
faithfully executed the protocol. The computer proves knowledge of ciphertext content
and the ballot box proves the correctness of its computations. In addition, the voter in
cooperation with the computer signs the submitted ballot with a digital signature from a
PKI, and the receipt generator signs a hash of the ballot which is then given to the voter
as a second receipt.
We discuss each player in some detail.

The voter The voter must, in cooperation with the computer, sign the submitted bal-
lot. Intuitively, this prevents a corrupt ballot box from inserting forged ballots, or falsely
claiming that a given ballot belongs to someone else. With signed ballots, it is trivial to
ensure that at most one ballot is counted per voter.

11



The computer The computer should prove that it knows the content of every submitted
ciphertext (x,w). Intuitively, this is to prevent a corrupt ballot box from using a corrupt
voter to submit honest voter’s ciphertexts as its own, then learn the ballot contents from
the receipt codes. Proof-theoretically, we will need to extract the vote from the ballot.

In theory, the proof of knowledge should have a proper online extractor [10], but morally
a more efficient non-interactive Schnorr proof will do, even if we do not have a knowledge
extractor for parallell composition.

The ballot box The ballot box must show the receipt generator the signed ballot, and
also prove that (&;,w;) is computed correctly. Intuitively, this is to prevent a corrupt ballot
box cooperating with a corrupt voter from misusing the receipt generator’s decryption
capability.

In order to verify correct computation, the receipt generator must now see the entire
ballot, including the voter’s signature and the computer’s proofs of knowledge. To simplify
the security proof, the ballot box will also randomize the ciphertext (&;,w;), although we
believe a somewhat more involved proof will allow us to dispense with the randomization.

The ballot box computes:

W = 5%,
(#,9) = (9", y%),
(&,0) = (2, D).

We need to hide @ and w. For this, we use ElGamal encryption with a random public
key as a commitment scheme. We can then use the fact that ElGamal commitments are
homomorphic, computationally hiding and unconditionally binding to create a reasonably
efficient proof of correct computation, essentially based on a Schnorr proof of knowledge
of a discrete logarithm. Interestingly, for this proof we do not need an online extractor.

Receipt generator The receipt generator verifies the voter’s signature and every proof,
then signs a hash of the ballot and returns the signature to the ballot box (who should
forward the signature to the voter’s computer). Without this signature, the voter’s com-
puter will not inform the user that the ballot has been accepted. If the ballot box discards
a ballot, this signature will allow a voter to prove, in cooperation with the auditor, that
his ballot was discarded.

We summarize the submission of a ballot and generation of receipt codes in the following
diagram. Here, m and 7; are non-interactive proofs, hy is a hash of the encrypted ballot,
and oy and og are signatures.

12



OR

(hy, oR)

Decryption service The decryption service is a reasonably standard system consisting
of a mix net followed by verifiable decryption. The mix net is similar to randomized partial
checking [14] or “almost entirely correct mixing” [1]. We defer the description and analysis
to the full version of the paper.

Auditor The auditor receives the entire content of the ballot box and a list of hashes
of encrypted ballots seen by the receipt generator. The auditor verifies the content of the
ballot box (signatures and proofs), that no ballots have been inserted or lost compared to
the receipt generator list and computes on its own a list of encrypted ballots that should
be counted. The auditor compares this list to the ciphertexts input to the mix net, then
verifies the proofs offered by the mix net and the decryption service. The auditor also
publishes hashes of every ballot, so that voters can verify that their ballots were included
in the count.

4 Conclusion

We have described a simplified version of the cryptographic protocol that will be used in
the Norwegian goverment’s e-voting experiment in 2011 and analysed its security. While
this method relies on a new and untested cryptographic assumption for security from the
receipt generator, we believe this is justified for the following reasons:

e The receipt generator will be quite well protected, and a compromise of this system
is quite unlikely.

e Most voters submit ballots with exactly one option. For such ballots, the problem
facing the receipt generator is essentially equivalent to Decision Diffie-Hellman with
a fixed generator, and it would be quite surprising if any such problem was easy.

e While the efficiency gains for mixing and decryption are significant, it is possible to
sacrifice these gains to get a less efficient system whose security is based entirely on
Decision Diffie-Hellman.

13



Future work There are several ways in which the full protocol or its analysis can be
extended. One possible idea is to have the voter’s computer generate ciphertexts (&, w;)
and prove that they have the same decryptions as the ciphertexts (x;,w;). Then the ballot
box computes (Z,w) directly, obviating the need for the secret key yo and the relationship
y1 + y2 = y3. To prevent the receipt generator from simply decrypting (Z;, w;), the voter’s
computer must actually submit a commitment to w; as well as an opening that is only
seen by the ballot box. Every proof must then work with the commitment, most likely
increasing total computational load.

If both the ballot box and the receipt generator are compromised and cooperate, election
privacy will still be lost even if the election decryption key is not revealed. The reason
is of course that the ballot box and the receipt generator together could decrypt (&;,w;).
However, if the system is only partially compromised (say, the keys and the content of the
ballot box leak after the election), it is possible to preserve election privacy if (&;,w;) and
(Z;,w;) are discarded after use. It is unclear if the modest increase in robustness justifies
the cost.

If the public key infrastructure in use provides each voter with a public key encryption
functionality, in addition to the identification and signature functionality, it might be
possible to move the entire computation of (&,w) to the voter’s computer. This should
be safe because the receipt generator applies a secret, pseudo-random function to the
decryption to get the receipt codes. In such a scheme, the ballot box might not need any
secret keys at all, a significant system simplification.

References

[1] Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications to
voting. In Vijayalakshmi Atluri, editor, ACM Conference on Computer and Commu-
nications Security, pages 68-77. ACM, 2002.

[2] e-voting security study. CESG, United Kingdom, July 2002. Issue 1.2.

[3] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84-88, 1981.

[4] David Chaum. Surevote. www.surevote.com, 2000.

[5] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security
& Privacy, 2(1):38-47, 2004.

[6] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-verifiable
election scheme. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter
Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Computer Science,
pages 118-139. Springer, 2005.

14



[7]

[11]

[12]

[14]

[15]

Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically
secure election scheme (extended abstract). In Proceedings of 26th Symposium on
Foundations of Computer Science, pages 372-382. IEEE, 1985.

Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung. Multi-
autority secret-ballot elections with linear work. In Ueli M. Maurer, editor, EURO-
CRYPT, volume 1070 of Lecture Notes in Computer Science, pages 72-83. Springer,
1996.

Ivan Damgard, Kasper Dupont, and Michael @stergaard Pedersen. Unclonable group
identification. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes
in Computer Science, pages 555-572. Springer, 2006.

Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with on-
line extractors. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in
Computer Science, pages 152-168. Springer, 2005.

Kristian Gjgsteen. A latency-free election scheme. In Tal Malkin, editor, CT-RSA,
volume 4964 of Lecture Notes in Computer Science, pages 425-436. Springer, 2008.

Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In Yvo Desmedt,
editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 145-160. Springer, 2003.

Sven Heiberg, Helger Lipmaa, and Filip van Laenen. On achieving e-vote integrity in
the presence of malicious trojans. Submission to the Norwegian e-Vote 2011 tender,
August 2009.

Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In Dan Boneh, editor, USENIX
Security Symposium, pages 339-353. USENIX, 2002.

Antoine Joux, Reynald Lercier, David Naccache, and Emmanuel Thomé. Oracle-
assisted static diffie-hellman is easier than discrete logarithms. In Matthew G. Parker,
editor, IMA Int. Conf., volume 5921 of Lecture Notes in Computer Science, pages
351-367. Springer, 2009.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elec-
tions. Cryptology ePrint Archive, Report 2002/165, 2002. http://eprint.iacr.
org/.

C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM
Conference on Computer and Communications Security, pages 116-125, 2001.

15



[18] P. Y. A. Ryan and T. Peacock. Prét a voter: a systems perspective. Technical Report
CS-TR No 929, School of Computing Science, Newcastle University, September 2005.

[19] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth. In Louis C. Guillou and Jean-Jacques
Quisquater, editors, FUROCRYPT, volume 921 of Lecture Notes in Computer Science,
pages 393-403. Springer, 1995.

16



